A kinetic investigation of the flocculation of alumina with polyacrylic acid.

نویسندگان

  • Kalyan K Das
  • P Somasundaran
چکیده

Using a model colloidal system of alumina and polyacrylic acid (PAA), the kinetics of flocculation was investigated at low polymer concentrations and short durations (on the order of seconds). The polymer-induced flocculation processes obeyed Von Smoluchowski's bimolecular rate equation. Increases in the concentration of the polymer resulted in higher rate constants for the flocculation process. At a fixed concentration (say 50 ppb, parts per billion), the rate constant values showed a maximum value for 250,000 g mol(-1) polyacrylic acid. At this polymer concentration, calculations of the surface coverage of alumina by PAA molecules of different molecular weights show that for all the cases the coverage is nearly the same, approximately 1x10(-3), but the flocculation response and the rates are significantly different. This trend in flocculation characteristics is attributed to the critical polymer number density requirement for effective flocculation (at least partial charge neutralization and initiation of flocculation). The mechanism governing the flocculation at ultralow concentrations (50 ppb) is the synergistic effect of partial patch neutralization and bridging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature Effect on Swelling Properties of Commercial Polyacrylic Acid Hydrogel Beads

Due to the fact that many application processes take place at different temperature, better examining and understanding of swelling properties as a function of temperature is essential for such application. The temperature effect on the swelling properties of commercial polyacrylic acid (PAA) hydrogel beads was investigated as a function of time and temperature. Gel bead size, swelling equilibr...

متن کامل

Temperature Effect on Swelling Properties of Commercial Polyacrylic Acid Hydrogel Beads

Due to the fact that many application processes take place at different temperature, better examining and understanding of swelling properties as a function of temperature is essential for such application. The temperature effect on the swelling properties of commercial polyacrylic acid (PAA) hydrogel beads was investigated as a function of time and temperature. Gel bead size, swelling equilibr...

متن کامل

Synthesis, characterization and swelling behavior investigation of gelatin-g-Poly(Acrylic Acid-co-Itaconic Acid)

A novel pH-responsive superabsorbent hydrogel based on gelatin was prepared through crosslinking copolymerization of poly (acrylic acid) and poly (itaconic acid). The copolymerization conditions including monomers, initiator, gelatin and crosslinker concentration, reaction temperature, and neutralization percent were systematically optimized to achieve a hydrogel with swelling capacity as high ...

متن کامل

Preparation Zirconia Toughened Alumina by Deflocculation-Flocculation Route (TECHNICAL NOTE).

Partially stabilized zirconia (PSZ) agglomerate toughened alumina has been prepared by the "deflocculation-flocculation" technique, using 2 and 3 mol. % Y2O3-doped zirconia powders. Samples containing up to about 30 vol.% zirconia were obtained. The resulting microstructure seems to be mainly influenced by the physical properties of the starting powders, e.g. agglomerate size and the specific s...

متن کامل

Thermal and catalytic degradation study of polyethylene and investigation the catalytic effect of X-Zeolite and Silica-Alumina on degradation kinetic

The thermal degradation of polyethylene (PE) was carried out in the absence and presence ofcatalystes X-Zeolite and Silica-Alumina at different temperatures. The optimum PE/Catalysisratio was 0.25:0.05 g/g, which produced highest degradation value. PE and PE/Catalysis werecharacterized by thermogravimetric analysis. The thermal degradation properties of polymerhave been studied by Infrared spec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 271 1  شماره 

صفحات  -

تاریخ انتشار 2004